not/configure
portability without pain

Alternative universes

What and why?

Plan 9 and Inferno
operating systems and supporting environments
distributed system
collection of specialised services to build one system
securely
portably
simply?
more than just a language

Plan 9

a complete operating system

kernel and user processes

virtual memory

networking

graphics

applications (shell, editor, dev. tools, window system)
distributed system

terminals, cpu server, file server

Inferno

Plan 9 ideas
Limbo (safe concurrent language, processes+channels)
Dis virtual (abstract) machine, with JIT
public-key authentication
native on ARM, PowerPC, x86
hosted on Linux, Windows, OS/X ...
looks like Inferno native OS to Inferno application
looks like application to host OS
includes /net interface
cheaper than VMM
originally designed and used for embedded devices in distributed system

Plan 9 portability

mix heterogeneous hardware transparently
common file structures for distributed systems
all software is intended portable by design

libraries

compilers

debuggers

commands

kernels

many architectures: x86, amd64, ARM, PowerPC, MIPS, SPARC, ...

alt.universe

Design: name space, distribution, concurrency, heterogeneous

System calls: about 30

Libraries: libc, bio, thread, sec, auth, regexp, mach

Tools: C compiler, mk

Protocols: 9p, network independence, no sockets

Commands: rc, cpu, rio, mk, acme, sam, db, acid, bind, import, 8a, 8c, 8], ...
Unixy: cat, ed, Is, sed, sort, uniq. Utf8 throughout

Services & resources: file servers ... no X11

System organisation

resources as ‘files’
computable name space

file service protocol (9P)

Distributed system implementation

serve tree using 9P on network file descriptor
import 9P (mount 9P connection in name space)
network graphics? import /dev/draw
network audio? import /dev/audio
network gateway? import /net (or just /net/tcp)

cpu service (connect, export/import, bind)

either side, or both, can be file server

Concurrency

designed for concurrency
symmetric multiprocessing
user-mode concurrency

shared memory and channels

most non-trivial file servers are concurrent programs
exportfs, rio, acme, dns, cs, fossil, venti

window system (rio) and editor (acme) are concurrent programs and file
servers

real-time support (EDF scheduler)

Plan 9 system interfaces

open, read/write, close
dup, pipe, fd2path, seek
create, remove, stat, wstat

bind, mount, unmount

rfork, wait, exits, exec

rendezvous, semacquire/semrelease
alarm/sleep, notify/noted

segbrk, segattach, segdetach, ...
errstr (last error, as string)

File servers: examples

kernel services
/dev
mainly device drivers, union mounted
data, ctl
cons, consctl
audio, audioctl
eia0, eiaOctl
multiplexers are file trees
user-mode services
boring: dossrv, 9660srv, tarfs, ..., ftpfs, nntpfs, paqfs

File servers: examples

more interesting
dns
cs [recipes]
upas/fs
keyfs
factotum [fgui]
draw, rio
acme
plumber
fossil
iostats

caches (9P < 9P)
cfs (1:1)
fscfs (many:1)

Name spaces: computable name spaces

mount connection to file server on existing name
bind existing name over another existing name (alias)
unmount a connection or alias
union mounts

/bin (search path)

/dev (many devices)

/net (many interfaces and protocols)

naming conventions

per-process granularity (no restrictions)

Networks

Inet/

arp
cS
dns
ether0/
addr
clone
ifstats
stats
0/
ctl
data
ifstats
stats
type

ether1/

Inet/
ipifc/

clone
stats

0/

iproute

ctl
data
err
listen
local
remote
shoop
status

/net/

tcp/

clone

stats

0/
ctl
data
err
listen
local
remote
status

1/

oP

file service protocol (RPC style, concurrent requests)

allows user-mode programs to create and serve trees of names
serve 9P on a file descriptor (eg, pipe, network)

mount file descriptor at existing directory in name space

operations below that directory become messages on the file descriptor

Support for portability

compilers
tools
conventions
simplicity
restraint

portability: how?

essentials of good programming practice
abstraction and encapsulation
simplicity and correctness

abstract away from details
byte ordering not visible internally
hardware instructions

increasing abstraction
storage management
concurrency

“porting” or “portability” is just a particular case

portability: how much?

easier the more you port
move a coherent environment
commands
libraries and interfaces
compilers, programming environment, native OS
the impulse to original Unix ports & others
Plan 9
Inferno
Plan9ports

Example: Plan 9

mix heterogeneous hardware transparently
- common file structures for distributed systems
all software is intended portable by design
- libraries
- compilers
- debuggers
- commands
- kernels
- many architectures
- cross-compile on any for all
- cd /sys/src; objtype=power mk install

the outer limit

easier the more you port? do the lot:
architecture independent applications
machine-independent object files
virtual machine (not necessary)
cross platform O/S environment
emulated
and native
universal abstract interface for hardware and OS
Inferno!
Java? (no: it's an older, more primitive approach)

hurdles

lies, damned lies, and processor documentation
avoidable ones (at present)

object and executable file details

compiler suite details, reliability and stability

techniques

#include

text interfaces (eg, ctl files not ioctl); error strings; uid/gid; UTF8

explicit binary encoding/decoding, byte at a time

mkKk parts list

/env/cputype, /env/objtype

/bin is empty: bind /$objtype/bin /bin; bind -b $home/bin/$objtype /bin
/$objtype/lib /sys/include /$objtype/include

well-defined and invariant environment; setjmp/longjmp
cross-compilation is fundamental

include files

/sys/include: everything is portable

/$objtype/include: machine-specific
72 amd64/include/u.h
30 amdé64/include/ureg.h
102 total

include files

one per library, specified order (man page), defined contents
#include <u.h>
#include <libc.h>
#include <auth.h>
#include <authsrv.h>
#include <mp.h>
#include <libsec.h>
#include <String.h>
#include <thread.h>
#include <fcall.h>
#include <9p.h>

compiler suite

compiler (binary format, abstract assembly language)
loader (linker), produces executable
assembler (front end for loader)

no cc command! letter per arch: .6, .8, .q, .v,... — 6.out, 8.out, ...

each component stored in per-target directory in /sys/src/cmd (qa, qc, ql)

C compiler has target-independent library (in cc), loader in /sys/src/cmd/ld
libraries: libc, libmach

supporting tools are portable (given libmach): acid, db

compilation

cross-compilation? 8c(/sys/src/cmd/qc), run qc — powerpc
cross-compile on any for all

one source tree:

cd /sys/src; objtype=power mk install
or

mk installall — for(objtype in $CPUS) mKk install

compiler construction
cross-platform debugging

mkfiles

</$objtype/mkfile HFILES=dat.h\
BIN=/$objtype/bin fns.h\
TARG=rio </sys/src/cmd/mKkone
OFILES=\
rio.$0\
data.$O\ /amd64/mkfile
fsys.$0\ </sys/src/mkfile.proto
scrl.$0\
time.$0\ CC=6¢c
util.$0\ LD=61
wctl.$0\ 0=6
wind.$0\ AS=6a

xfid.$0\

/sys/src/mkfile.proto

#

common mkfile parameters shared by all architectures
#

0S=5678qv

CPUS=arm amd64 arm64 386 power mips
CFLAGS=-FTVw

LEX=lex

YACC=yacc

MK=/bin/mk

standard mkfiles

112 sys/src/cmd/mkfile
46 sys/src/cmd/mKklib
77 sys/src/cmd/mkmany
60 sys/src/cmd/mkone
43 sys/src/cmd/mksyslib
338 total

configuration

specification and abstraction
make a decision (change with time)
mkfile is parametrised: </$objtype/mkfile
source code is not (as such), hence no #ifdef
examples: /sys/src/mkfile, /sys/src/mkone, mkmany, mklib, mksyslib
Inferno’s mkfiles
mkhost-$HOST
mkfile-$HOST-$TARGET
mkone-$SHELLTYPE # sh, rc, nt

mkfile examples

target class of system (eg, Inferno: Posix, Windows, Plan 9, other ...)
named and labelled

$cputype vs $objtype

port compiler, kernel cd /sys/src/; objtype=... mKk install # installall
rc shell

mKk

cross-platform: access remote /proc

Data representation

byte ordering: spell it out
uchar *p = ..,;
s = (p[1]<<8) | p[0]; /* little endian 16-bit value */
s = (p[0]<<8) | p[1]; /* big endian value */
avoid short or long for external data:
struct {
uchar opl[2];
uchar id[4];

9P Protocol

size[4] Tversion tag[2] msize[4] version[s]
size[4] Rversion tag[2] msize[4] version[s]

size[4] Tauth tag[2] afid[4] uname[s] aname[s]
size[4] Rauth tag[2] aqid[13]

size[4] Tflush tag[2] oldtag[2]
size[4] Rflush tag[2]

size[4] Tattach tag[2] fid[4] afid[4] uname[s] aname[s]
size[4] Rattach tag[2] qid[13]

size[4] Twalk tag[2] fid[4] newfid[4] nwname[2]
nwname*wname[s]
size[4] Rwalk tag[2] nwqid[2] nwqid*wqid[13]

size[4] Topen tag[2] fid[4] mode[1]
size[4] Ropen tag[2] qid[13] iounit[4]

size[4] Tcreate tag[2] fid[4] name[s] perm[4] mode[1]
size[4] Rcreate tag[2] qid[13] iounit[4]

size[4] Tread tag[2] fid[4] offset[8] count[4]
size[4] Rread tag[2] count[4] data[count]

size[4] Twrite tag[2] fid[4] offset[8] count[4] data[count]
size[4] Rwrite tag[2] count[4]

size[4] Tclunk tag[2] fid[4]
size[4] Rclunk tag[2]

size[4] Tremove tag[2] fid[4]
size[4] Rremove tag[2]

size[4] Tstat tag[2] fid[4]
size[4] Rstat tag[2] stat[n]

size[4] Twstat tag[2] fid[4] stat[n]
size[4] Rwstat tag[2]

size[4] Rerror tag[2] enamels]

Support for portability

compilers
tools
conventions
simplicity
restraint

Native kernels

no need to rebuild the hardware in software
map the software requirements (interfaces) into the hardware
the mapping need not be surjective!
don't make hardware implementation visible needlessly
abstraction to hide details (eg, MMU implementation)

Network name resolution: domains

Inet/dns
write name to be translated

read sequence of possible translations, one per line
> www.google.com

www.l.google.com ip 173.194.66.104
www.l.google.comip 173.194.66.106
www.l.google.com ip 173.194.66.147
www.l.google.comip 173.194.66.103
www.l.google.comip 173.194.66.99

www.l.google.comip 173.194.66.105

> google.com soa
google.com soa ns1.google.com dns-admin.google.com 2012042000 7200 1800 1209600 300

http://www.google.com

Network name resolution: symbolic names

Inet/cs
translates names for variety of networks and protocols

write network name to be translated
[net!] netaddr [! svchame]

read set of recipes, one per line
> netldispensa!9fs

/net/il/clone 144.32.112.69!17008
/net/tcp/clone 144.32.112.69!564

network independent

telnet net!host!svc [text, /net/cs]
add pk network /net/pk/...
no change to source or executable

